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Mathematical Olympiad for Girls 2021 Markers’ report

Introduction
For many students, and possibly some teachers, this is the first experience of attempting a
Maths Olympiad paper. It may therefore be useful to understand how these papers are marked,
as students may be disappointed to receive a small number of marks for a problem they thought
they had almost solved.

All Olympiad papers are marked using what the call the ‘0+/10−’ principle. This means that
the markers first read the whole write-up and decide whether the student has a viable strategy
to solve the problem. It may be that there are some mistakes or small gaps in their reasoning,
but if those could be relatively easily filled in then this response is marked in the ‘10−’ regime,
with usually up to three marks being taken away for gaps and mistakes. Common examples of
small gaps are algebraic or arithmetical errors (provided they don’t change the nature of the
argument), missing one of several cases in a counting question, or lack of geometrical reasons
when calculating angles.

If, on the other hand, the student has only started to explore the problem and has only made
some useful observations, but does not have a strategy to generalise or prove them, then the
script is marked in the ‘0+’ regime. Up to three marks may be available for spotting a pattern or
trying an idea which, if progressed further, could lead to a solution. The example of the former
in the present paper would be, in Question 4, trying the game for 𝐴 = 1 to 10 and conjecturing
the correct answer. An examples of the latter would be using algebra to describe the tiles in
Question 2, or introducing some variables for the unknown lengths in Question 3 and writing
down the area and perimeter equations. Notice that all those examples involve a substantial
engagement with the problem, rather than just trying one or two examples. Teachers should
therefore reiterate to students that scoring even one or two marks on any of these questions is a
real achievement.

It is unfortunately often the case that students think that they have solved a problem but only
receive two or three marks. The most common reason for this is that their solution relies on
a series of unjustified claims. The prime example in this paper was Question 4, where many
candidates made correct claims about the number of odd numbers in various cases, or about the
parity of the expression 𝐴(𝐴−1)

2 . If those claims were purely made on the basis of observation,
with no justification of why they are true in general, then this does not constitute a proof and
can only receive marks in the ‘0+’ regime. Students in this situation are strongly advised to
read these comments and the official solution, to understand how they can add sufficient detail
to their proofs.

The Girls’ Olympiad paper is slightly different from other Maths Olympiads in that questions
are broken down into several parts. Most of the time, the final part is the “main question” and
the first part (or parts) are intended to suggest some useful results or good approaches to the
problem. The reason for structuring the paper in this way is that the setters know that many of
the candidates are not experienced in olympiad mathematics, and the hope is that by giving
these pointers, we enable them to engage with a question even if they are not familiar with
some standard olympiad technique or “trick”. A useful hint is to read the whole question first
and try to understand how the early parts may be helpful in solving the main problem.
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General comments
The markers were pleased to see so many good answers to the questions on this paper, including
many good attempts at the very challenging Question 5. We were particularly impressed that
on Questions 2 and 4 so many candidates engaged with the problem and made some insightful
observations, and tried to explain them, even if their justifications were not complete. It is
pleasing to see that such a large number of students understand the importance of explanation
and proof.

We saw some excellent examples of mathematical communication with candidates choosing
wisely between words, equations and diagrams. Olympiad paper markers usually comment
that students should use more words to explain what they are doing, but in this paper we often
observed the opposite: candidates were trying to explain their calculations in words where a
combination of words and equations would have been clearer. One example of this was Question
2 part (a), where we often saw statements like ‘The numbers on either side of the middle tile are
the same distance away, so the total is three times the middle number’ – this is true, but could
be expressed more elegantly using algebra as (𝑥 − 1) + 𝑥 + (𝑥 + 1) = (𝑥 − 4) + 𝑥 + (𝑥 + 4) = 3𝑥.

Sometimes the use of algebra was not quite precise enough, although it was clear what was
being said. For example, in Question 4 we often saw statements like ‘even + odd = odd’ justified
by writing 2𝑛 + (2𝑛 + 1) = 4𝑛 + 1. This does not prove the statement in general, since ‘𝑛’ for the
two numbers need not be the same. A correct equation would be 2𝑛 + (2𝑚 + 1) = 2(𝑛 +𝑚) + 1.
On the other hand, in Questions 1 and 3 we saw some confident and accurate manipulation of
quadratic equations.

The paper revealed some common misconceptions which teachers could use for discussion
with their classes. Most of these seem to stem from trying to “guess a rule” rather than using
examples to explore it. Some of the common incorrect statements we saw are: ‘One less than
a multiple of 4 is a multiple of 3’, ‘The sum of an odd number of numbers is odd’ and ‘A
non-multiple of 3 minus another non-multiple of 3 is a multiple of 3’. All of these statements
can be explored using examples, hopefully leading to the discovery of the correct “rules”.
Stronger students can then be challenged to try and prove the correct statements, but even the
less confident students can benefit from the idea that mathematical rules can be explored and
discovered, rather than just learnt.
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Mark distribution

The MOG 2021 paper was marked online by a team of Alan Slomson, Alfred London, Amit
Goyal, Amit Shah, Amit Srivastava, Andjela Sarkovic, Andrew Ng, Daniel Claydon, David
Vaccaro, Frankie Richards, Ina Hughes, Jeremy King, Jordan Baillie, Joseph Myers, Kasia
Warburton, Kit Kilgour, Laura Daniels, Martin Orr, Mary Teresa Fyfe, Matthew Smith, Melissa
Quail, Michael Illing, Michael Thornton, Naomi Bowler, Patricia King, Paul Druce, Paul Scarr,
Peter Price, Phillip Beckett, Richard Freeland, Robin Bhattacharyya, Sam Bealing, Sam Neil,
Sophie Maclean, Stefan Dixon, Stephen Tate, Sue Cubbon, Sylvia Neumann, Tom Bowler,
Vesna Kadelburg, Vivian Pinto and Wendy Dersley.

We received non-empty scripts from 2229 candidates.

0 10 20 30 40 50
0

20

40

60

80

100

Olympiad mark

Fr
eq
ue
nc
y

© 2021 UK Mathematics Trust www.ukmt.org.uk 4

http://\UKMTweb 


Mathematical Olympiad for Girls 2021 Markers’ report

Question 1

(a) Find all whole numbers 𝑥 such that

(𝑥2 − 7𝑥 + 11) (𝑥2−4𝑥+4) = 1.

(7 marks)
(b) Find all whole numbers 𝑥 such that

(𝑥2 − 7𝑥 + 11) (𝑥2−4𝑥+4) = −1.

(3 marks)

Solution

(See the official solutions document.)

Markers’ comments

For the first question on the paper the aim for the setters is to make it accessible to all candidates,
and whilst pleasingly we saw over 40% of candidates achieving 7 marks or more we also saw
that 25% of candidates achieved fewer than 3 marks. There were a number of common errors
and oversights which meant that the modal mark was 7, with a quarter of candidates achieving
this.

The most common oversight was to forget to check to see if the base could be (−1) and the
power even in part (a). Remarkably many candidates correctly solved part (b) by finding out
when the base was (−1) but failed to realise that they had in fact found another solution to
part (a)!

A relatively common error in both parts was to assume that the power had to be 1, which did
lead to some correct solutions but is not true in general because any power of 1 gives 1. A less
frequent error was that candidates incorrectly believed that 1−1 = −1 leading to the false claim
that there are no solution to part (b). For any candidate studying for their GCSE or A-Level in
Mathematics it is vitally important they learn the rules of indices as they are fundamental to
much of the algebra we do.

For a competition aimed at Year 11, 12 and 13 students we would expect solving quadratic
equations to be a key skill all candidates had previously mastered. Unfortunately, it was clear
that some candidates were unfamiliar with quadratic equations and how to solve them. There
were often trial and error methods employed and correct solutions found, but usually these
were not awarded marks because there was no reasoning provided as to why there were no
more solutions. In a very small number of cases candidates successfully argued that the base
and the power became too large when 𝑥 > 7, but most arguments were vague at best and
awarded very few marks if any. It is important that candidates remember that when attempting
a Mathematical Olympiad problem, any claim they make that is relevant to their solution must
be fully justified. This justification will often take the form of algebra as it did in this problem
but this is not always the case.
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Question 2

Consider a 4 × 4 grid numbered 1 to 16 left to right then top to bottom. Tile A or Tile B is
placed onto the grid so that it covers three adjacent numbers.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

A
B

(a) If Tile A is placed onto the grid (the orientation of the tile may be changed), can the
total of the uncovered numbers be a multiple of three? (3 marks)

(b) In how many different ways can Tile B be placed onto the grid (the orientation of the
tile may be changed) so that the sum of the uncovered numbers is a multiple of three?

(7 marks)

Solution

(See the official solutions document.)

Markers’ comments

This was both the most popular (83% of candidates scoring marks) and the highest scoring
question; in fact, the modal mark was 10, although there was also a large number of low-scoring
attempts. We were impressed by a variety of solutions and some excellent communication
skills.

It is possible to answer this question by simply listing and checking all possible positions of the
two tiles: there are only eight possible positions for Tile A and 36 for Tile B. Those studying A
Level will know that this is a valid method, called proof by exhaustion, and it can score full
marks. However, those attempting it should be careful to list all the possibilities in a systematic
order, to ensure that none are repeated or left out, and any arithmetical errors will lead to the
loss of most of (or even all) the marks.

Some candidates attempting the listing method spotted a pattern in the covered or uncovered
totals, although very few were able to explain it fully. For example, for Tile B in the ‘L’
orientation, the uncovered totals are 124, 121, 118, 112, 109, . . . . This observation forms a
basis of a short and elegant method, as follows. When a tile is moved horizontally, each
square’s value changes by 1, so the total covered (or uncovered) changes by 3. When a tile is
moved vertically, each square changes by 4 so the total changes by 12. This means that, for a
given orientation of a tile, either all possible position will give a multiple of three, or none of
them will. Hence we only need to check the uncovered totals when the tile is in the top-left
corner. For Tile A these are 136 − (1 + 2 + 3) = 130 and 136 − (1 + 5 + 9) = 121 and for Tile
B they are 136 − (1 + 2 + 5) = 128, 136 − (1 + 2 + 6) = 127, 136 − (1 + 5 + 6) = 124 and
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136 − (2 + 5 + 6) = 123. Of these, only the last one is a multiple of 3, so only one orientation
of Tile B works.

The most commonly successful method was the one presented in the official solution, using
algebra to find expressions for the covered and uncovered totals. Any algebraic solution should
start by defining variables clearly, and most candidates did this by drawing and labelling the
tiles.

Another elegant solution involves replacing the numbers in the grid by the remainders they give
when they are divided by 3. More experienced students will know that this is called “arithmetic
modulo 3”, but we were really impressed by the number of candidates who clearly came up with
the idea by themselves, sometimes using colours or shapes to represent different remainders.
Once you have formed the grid of remainders (which begins 1, 2, 0, 1; 2, 0 . . . ) it becomes
clear that Tile A covers one of each number, so the total covered is always 0 + 1 + 2 which is a
multiple of 3. For Tile B there are more options, but we only need to look for ones that work.
Since 136 gives remainder 1 when divided by 3, to get a multiple of 3 the covered total also
needs to leave remainder 1. This means that the three covered numbers must add up to 1 or 4.
The only ways to get one of these are 1 + 0 + 0, 1 + 1 + 2 and 2 + 2 + 0. Each can be found in the
grid three times, corresponding to nine possible placements of Tile B.
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Question 3

The diagram shows a quadrilateral 𝐴𝐵𝐶𝐷, where 𝐴𝐵 is 2 cm and ∠𝐴𝐵𝐶, ∠𝐴𝐶𝐷 and
∠𝐷𝐴𝐵 are right angles.

𝐴

𝐵𝐶

𝐷

2 cm

(a) Let 𝐸 be the point on 𝐷𝐴 such that 𝐶𝐸 is perpendicular to 𝐷𝐴. Prove that triangles
𝐴𝐵𝐶 and 𝐷𝐸𝐶 are similar. (2 marks)

(b) Given that the area of quadrilateral 𝐴𝐵𝐶𝐷 is 6 cm2, find all possible values for the
perimeter of quadrilateral 𝐴𝐵𝐶𝐷. (8 marks)

Solution

(See the official solutions document.)

Markers’ comments

Geometry tends to be the least popular topic in Olympiads, but this question was answered well
with 75% of candidates scoring marks and over a quarter essentially solving the problem. It
was encouraging to see students finding several different methods to approach it.

In part (a), showing that the two triangles are similar required proving that angles in each
triangle are equal, for example angles 𝐴𝐶𝐵 and 𝐷𝐶𝐸 (and also the right angles). A sequence
of true equations involving angles was desired, but also some geometrical justification, for
example ‘angles in a triangle’ or ‘alternate angles’ stated each time that those results were
applied, and it needed to be observed (if used) that angle 𝐸𝐶𝐵 is a right angle (this follows,
for example, from angles in the quadrilateral 𝐴𝐵𝐶𝐸). Many students lost a mark in part (a)
for a lack of geometrical justification. The 2cm sides were not at all relevant to showing that
these triangles are similar. In fact, looking at side lengths was not the way to go in part (a), so
students trying such an approach were unsuccessful.

Some students will have thought that they had solved part (a) but actually hadn’t – for two
main reasons. Firstly, some students showed that triangles 𝐴𝐵𝐶 and 𝐶𝐸𝐴 are similar (in fact
congruent) and stopped there – but it was necessary to look at angles in the triangle 𝐷𝐸𝐶

to receive credit here. Others showed that triangles 𝐴𝐵𝐶 and 𝐷𝐶𝐴 are similar. Secondly,
some students tried to use scale factors together with Pythagoras, observing that if two sides of
triangle 𝐴𝐵𝐶 were scaled up by the same scale factor then Pythagoras would be consistent
with the third side being scaled up by the same scale factor. But this approach assumes from
the start that the triangles are similar – so it’s not a valid way of proving similarity. There
were also some students who mistakenly assumed from the start that some angles had to be 45
degrees (they didn’t have to be).

In part (b), the idea was to use part (a) as a hint – as is often the case in MOG questions. The
similarity of triangles would give a relationship between 𝐵𝐶 and 𝐷𝐸 , and area considerations
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would give us another equation; then algebra would be required to solve these simultaneous
equations – leading to a quadratic equation to be solved.

The major misconception in part (b) was assuming that 𝐵𝐶 or 𝐷𝐸 had to be integers. The area
equation gave 𝐷𝐸 + 2𝐵𝐶 = 6. Many students noticed that the only positive integer solutions to
this equation are 𝐵𝐶 = 1 and 𝐵𝐶 = 2, and then they calculated the perimeters from there. This
did in fact produce the correct two numerical answers for the perimeter, but this was really just
a coincidence, and these students received little credit. It was necessary to eliminate all the non-
integer possible solutions (for 𝐵𝐶) and, for this, the similarity of triangles was also to be used.

There were some excellent alternative solutions found by students taking the paper. Part (b)
could be solved without using part (a). For example, Pythagoras could be used in triangles
𝐴𝐵𝐶, 𝐷𝐸𝐶 and 𝐷𝐶𝐴 to discover that the product of 𝐷𝐸 and 𝐵𝐶 is equal to 4, and this
equation can then be solved simultaneously with the equation coming from considering area.

A few students even went back to prove similarity in (a) after reaching this point in (b), using
scale factors between the sides (deriving 𝐷𝐸

2 = 2
𝐵𝐶
and concluding similarity).

There were other algebraic approaches for (b) that were found by some students, involving
a mixture of Pythagoras and similarity of triangles (especially when using hypotenuses of
similar triangles). One approach which worked involved finding the area of triangle 𝐷𝐶𝐴 in
two different ways, as 𝐷𝐴 and as 𝐶𝐴×𝐶𝐷

2 (with all these distances given in terms of 𝐵𝐶 and
𝐷𝐸 – using Pythagoras to express each of 𝐶𝐴 and 𝐶𝐷 in terms of these quantities). There was
some excellent algebraic manipulation from many candidates in solutions of these types.

Trigonometry was also a successful method used by a few to solve part (b), especially if every
relevant length could be put in terms of tan(𝐵𝐴𝐶) or tan(𝐴𝐶𝐵); this led to a quadratic equation.
One student proved part (a) by using trigonometry, finding two scale factors as tan 𝑍 and as

1
sin 𝑍 cos 𝑍 − 1

tan 𝑍 , and then proving that these are equal to each other, using a trigonometric
identity.

One nice way to relate angles in triangles 𝐴𝐵𝐶 and 𝐷𝐸𝐶 (in part (a)) was to consider angles in
the quadrilateral 𝐴𝐵𝐶𝐷 – there were three right angles and also angles 𝐴𝐶𝐵 and 𝐶𝐷𝐸 , which
must therefore sum to give 90 degrees. Finally, some students noticed that simply rotating
triangle 𝐴𝐵𝐶 by 90 degrees would give a triangle with all its sides parallel to the sides of
triangle 𝐷𝐸𝐶 – leading to equal angles in the triangles.
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Question 4

Sam is playing a game. Her teacher gives her a positive whole number 𝐴, and then Sam
chooses a positive whole number 𝑆. Sam then adds together all of the integers between 𝑆
and 𝑆 + 𝐴 − 1 (inclusive) to obtain a total 𝑇 . If 𝑇 is even, Sam wins the game. For example,
if 𝐴 = 4, Sam can win by choosing 𝑆 = 10 because then 𝑇 = 10 + 11 + 12 + 13 = 46.
(a) (i) Show that if 𝐴 = 4, Sam will win the game no matter which number she chooses.

(ii) Show that if 𝐴 is a multiple of 4, Sam will win the game no matter which number
she chooses. (3 marks)

(b) For which other values of 𝐴 can Sam choose an 𝑆 so that she wins? You must show
how she can win for each of those values, and also explain why she cannot win for all
the other values. (7 marks)

Solution

(See the official solutions document.)

Markers’ comments

We were really impressed with the level of engagement with this question, with 80% of
candidates scoring some marks on it, and just under a quarter making substantial progress.
Many more candidates found the correct answer, often by trying a few examples and spotting a
pattern, but were not able to justify why the pattern continues beyond their examples. Explaining
how we can be sure that patterns continue forever is a major aspect of mathematical proof, and
such candidates will really benefit from reading these notes carefully.

For the first part, there was about an even split between candidates using algebra (𝑆 + (𝑆 + 1) +
(𝑆 + 2) + (𝑆 + 3) = 4𝑆 + 6) and those noticing that four consecutive numbers must contain two
evens and two odds, which always sum to an even number.

For the second part of (a), there were many successful uses of the formula for the sum of
consecutive numbers. Those trying to link part (ii) to part (i) often had the right idea of
considering blocks of 4, but many made incorrect statements in their explanations. For example,
a common claim was ‘When 𝐴 = 4, 𝑇 = 4𝑆 + 6, so when 𝐴 = 4𝑛 we will have 𝑇 = 𝑛(4𝑆 + 6).’
This is trying to use algebra to express the idea that 𝑛 blocks of 4𝑆 + 6 are being added
together, but those blocks are not all the same; a correct statement would be something like
𝑇 = (4𝑆1 + 6) + (4𝑆2 + 6) + . . . It is worth noting that some ideas are more easily expressed
using words than algebra, and good mathematical communication involves choosing the best
representation. For example, the idea above is most clearly expressed simply by saying ‘When
𝐴 = 4𝑛, there are 𝑛 blocks of four added together, and each block of four has an even sum.’

Another common incorrect statement was that ‘there is an even number of odd numbers because
𝐴 is even’. This is clearly not true – for example, when 𝐴 = 6, there are three even and three
odd numbers. The correct statement is that, since 𝐴 is a multiple of 4, half of 𝐴 is also even, so
the number of odd numbers is even.

Trying to count odd numbers was a popular approach to part (b) as well. This can be made into
a rigorous argument, but unsubstantiated claims based of spotting a pattern did not receive
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many marks. For example, a common (correct) claim was that ‘If 𝐴 is a multiple of two but not
a multiple of four, there is an odd number of odd numbers.’ This can be justified relatively
simply by saying that in this case, half of 𝐴 is odd – notice how this clearly distinguishes this
case from the case 𝐴 = 4𝑘 above. Counting odd numbers when 𝐴 is odd requires slightly more
thought, but we could say something like this: If 𝐴 = 2𝑛 + 1 and we start on an even number,
then there will be 𝑛 + 1 even numbers and 𝑛 odd numbers; so Sam can win if 𝑛 (which is 𝐴−1

2 )
is even and S is even; a similar argument can be made about starting on an odd number.

As well as unjustified correct claims about even and odd numbers, we also saw many incorrect
claims, which could have been easily checked by trying some examples. For example, ‘A sum
of an odd number of consecutive numbers is always odd’ is clearly false, as can be seen from
1 + 2 + 3 = 6.

Most successful candidates tackled this question by finding a formula for 𝑇 , either in the form
𝑇 =

𝐴(2𝑆+𝐴−1)
2 or 𝑇 = 𝐴𝑆 + 𝐴(𝐴−1)

2 . Those using the first formula usually found that two of
the possibilities are 𝐴 = 4𝑘 (already considered in part (a)) and 2𝑆 + 𝐴 − 1 = 4𝑘 , leading to
𝐴 = 4𝑘 − 2𝑆 + 1, an odd number. In this case it needs to be justified that, for every odd 𝐴,
it is possible to find an 𝑆 such that 2𝑆 + 𝐴 − 1 is a multiple of 4. Trying to prove this leads
to realising that the winning choice of 𝑆 depends on the remainder when 𝐴 is divided by 4.
However, there is a third possibility, namely that neither 𝐴 nor 2𝑆 + 𝐴 − 1 are multiples of 4 but
both of them are multiples of 2. Although this proves to be impossible (because if 𝐴 is even
then 2𝑆 + 𝐴 − 1 must be odd), many candidates lost marks for failing to mention it at all.

The second version of the formula, 𝑇 = 𝐴𝑆 + 𝐴(𝐴−1)
2 , leads to a similar analysis, although it is

a little harder to classify all the cases. For the sum to be even, the two terms must be either
both even or both odd. There is only one way for 𝐴𝑆 to be odd – when both 𝐴 and 𝑆 are odd
numbers. But this doesn’t mean that all odd numbers 𝐴 work, because 𝐴(𝐴−1)

2 must also be odd.
Some experimenting suggests that this is the case for every other odd number, but this needs to
be proved. The easiest way to do this is to write 𝐴 = 2𝑘 + 1 in which case 𝐴(𝐴−1)

2 = 𝑘 (2𝑘 + 1)
and this is odd when 𝑘 is odd (so we can write 𝑘 = 2𝑛 + 1). Hence 𝑆 odd only works with
𝐴 = 4𝑛 + 3. When both 𝐴𝑆 and 𝐴(𝐴−1)

2 are even, there are two options: 𝐴 even, or 𝐴 odd and
𝑆 even. We can then ask when 𝐴(𝐴−11)

2 is even and find that the winning combinations are 𝐴
being a multiple of 4 or 𝐴 = 4𝑛 + 1 and 𝑆 even. Candidates using this version of the formula
often had a good idea of the answer, but were not able to classify all the cases clearly.

It should be noted that the question didn’t explicitly ask for a choice of 𝑆 for each value of
𝐴, but only for which values of 𝐴 a winning 𝑆 can be found. Some candidates exploited this
successfully by using the following argument with the second formula, 𝑇 = 𝐴𝑆 + 𝐴(𝐴−1)

2 . If
𝐴 is odd, Sam can make 𝐴𝑆 the same parity as 𝐴(𝐴−1)

2 by choosing 𝑆 appropriately, so she
can win for all odd 𝐴. For even 𝐴, she can only win if 𝐴(𝐴−1)

2 is also even, in which case she
will win with any choice of 𝑆. By writing 𝐴 = 2𝑘 , we find that this only happens when 𝐴 is a
multiple of 4.

Finally, while we have pointed out at the start that answers found by pattern-spotting did not
receive many marks, it is a useful starting point which allows you to formulate some correct
statements (which then of course you need to prove) and, just as importantly, avoid making
false ones.
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Question 5

(a) By considering their difference, or otherwise, find all possibilities for the common
factors of 𝑛 and 𝑛 + 3. (1 mark)

For 𝑛 ≥ 2, let 𝑃(𝑛) denote the largest prime factor of 𝑛.
(b) If 𝑎 and 𝑏 are positive integers greater than 1, explain why 𝑃(𝑎𝑏) must be equal to at
least one of 𝑃(𝑎) or 𝑃(𝑏). (1 mark)

(c) Find all positive integers 𝑛 such that 𝑃(𝑛2 + 2𝑛 + 1) = 𝑃(𝑛2 + 9𝑛 + 14). (8 marks)

Solution

(See the official solutions document.)

Markers’ comments

This was a genuinely challenging problem, with only around 30 candidates essentially solving
it and another 60 making significant progress. On the other hand, over 40% of candidates
scored at least one mark, showing a willingness to engage with even the most difficult problems
– they should be really proud of their attitude.

Many candidates attempted part (a) but did not fully understand what was required in order
to get the mark: either they wrote down 1 and 3 as the possible common factors, but did not
explain why no other common factors are possible; or they explained correctly why no other
common factors are possible, but did not include 1 as a common factor.

The number of correct answers to part (b) was encouraging as it required understanding both
the definition of 𝑃(𝑛) and the behaviour of prime factorisation. Unfortunately some candidates
did not understand the function notation and interpreted 𝑃(𝑛) either as meaning “n is prime” or
as something to do with probability.

Part (c)was a hard questionwhose solution required several steps, including a solid understanding
of both parts (a) and (b). Many candidates factorised the quadratics, which is an essential first
step, but only a few recognised that they could then use (b). Those who did often managed to
get as far as 𝑃(𝑛 + 1) = 𝑃(𝑛 + 7) = 2 or 3. Making further progress required a careful analysis
of possible cases and also ensuring that 𝑃(𝑛 + 2) is not greater than the other two.

The 60 or so candidates who made substantial progress largely got stuck in the same place.
The three possibilities for 𝑛 + 1 and 𝑛 + 7 are: they are both powers of 2, they are both powers
of 3, or they have both 2 and 3 as factors (so that 𝑛 + 1 = 2𝑎3𝑏 and 𝑛 + 7 = 2𝑐3𝑑). The first two
cases can be dealt with easily, as gaps between successive powers of 2 or 3 grow exponentially,
so only the first few cases need to be checked. Unfortunately, the same is not true in the third
case, as can be seen by looking at the sequence: 6, 12, 18, 24, 36, 48, 54, 72, 96, 108. . . . So
some more work is needed to narrow down the options.

One way to proceed is to cancel a factor of 6 to find that either 2𝑐−1−3𝑏−1 = 1 or 3𝑑−1−2𝑎−1 = 1
or 2𝑐−13𝑑−1 − 1 = 1. The third equation clearly has only one solution (𝑎 = 2, 𝑑 = 1). The
first two are examples of the so-called Catalan Conjecture, a result that has only been proved
recently, that says that the only consecutive powers of 2 and 3 are 8 and 9. This known fact
could be quoted without proof.
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It sounds unfair that a knowledge of such an obscure theorem is required to solve this problem.
But the whole analysis of the last two paragraphs can be avoided by noticing that, if 𝑛 + 1 and
𝑛 + 7 have both 2 and 3 as factors, then 𝑛 + 2 must have a factor that is not 2 or 3, which would
make it larger than 𝑃(𝑛 + 7), and therefore none of these options lead to a solution for 𝑛. Those
who tried pairs such as 6 and 12 or 48 and 54 may have noticed this anyway.

This brings us to the final point: Just because we found an 𝑛 that satisfies the condition
𝑃(𝑛 + 1) = 𝑃(𝑛 + 7) = 2 or 3, it does not mean that this is a solution to the original problem, as
we also need 𝑃(𝑛 + 2) ≤ 𝑃(𝑛 + 7). It was therefore necessary, for the final mark, to check that
𝑛 = 2 does indeed work.
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