
UKMT

UK
M

TUKM
T

United Kingdom
Mathematics Trust

Mathematical Olympiad for Girls

© 2019 UK Mathematics Trust

Solutions

These are polished solutions and do not illustrate the process of failed ideas and rough work by
which candidates may arrive at their own solutions. All of the solutions include comments,
which are intended to clarify the reasoning behind the selection of a particular method.

The mark allocation on Mathematics Olympiad papers is different from what you are used to at
school. To get any marks, you need to make significant progress towards the solution. This is
why the rubric encourages candidates to try to finish whole questions rather than attempting
lots of disconnected parts.

Each question is marked out of 10. It is possible to have a lot of good ideas on a problem, and
still score a small number of marks if they are not connected together well. On the other hand,
if you’ve had all the necessary ideas to solve the problem, but made a calculation error or been
unclear in your explanation, then you will normally receive nearly all the marks.

Enquiries about the Mathematical Olympiad for Girls should be sent to:

UK Mathematics Trust, School of Mathematics, University of Leeds, Leeds LS2 9JT

T 0113 343 2339 enquiry@ukmt.org.uk www.ukmt.org.uk

mailto:\UKMTemail 
http://\UKMTweb 


Mathematical Olympiad for Girls 2019 Solutions

1. At Mathsland Animal Shelter there are only cats and dogs. Unfortunately, one day 60
of the animals managed to escape. Once a volunteer had realised, they counted the
remaining animals. They noted that half of the cats and a third of the dogs had escaped.
(a) (i) If the number of cats before the escape was C and the number of dogs before

the escape was D, write down an equation linking C and D.
(ii) If the total number of animals before the escape was T , write down an equation

linking C, D and T .
(4 marks)

(b) Given that more cats than dogs escaped, find the largest possible value of T . You
must justify why the value you have found is the largest. (6 marks)

Solution

Commentary

This is similar to standard simultaneous equations questions you have probably met
at school. The difference is that, once you have written down the two equations, you
will see that you don’t have enough information to uniquely determine the values of
C, D and T .

You may want to start by trying to find the values of C and D for various values of T .
Can you always find a solution that works? Remember that the question places some
constraints on possible values of C and D.

To justify that the value you have found for T is the largest possible, you must show
that this value can be achieved (by showing an example of C and D in that case) and
also that any value larger that is cannot be achieved.

(a) The total number of escaped animals is 60, and the total number of animals before the
escape is T .

(i) 1
2C + 1

3 D = 60

(ii) C + D = T

(b) From the first equation, D = 180 − 3
2C. Substituting into the second equation,

T = C + (180 − 3
2C) = 180 − 1

2C.

Therefore T is the largest possible when C is the smallest possible. Since more half of the
60 escaped animals were cats, 1

2C ≥ 31, so T ≤ 180 − 31 = 149. This value is achieved
with C = 62 and D = 87.

Hence the largest possible value of T is 149.
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Commentary

An alternative approach for part (b) is to solve the equations for C and D in terms
of T .

Rewrite the first equation as 3C + 2D = 360. Multiplying the second equation by 2
and subtracting from the first gives C = 360 − 2T . Substituting back then gives
D = 3T − 360.

You now need to consider the constraints on C and D. First, both need to be non-
negative, so T ≤ 180 and T ≥ 120. The condition that more cats and dogs escaped
means that 1

2C > 1
3 D or, equivalently, 3C > 2D. Substituting the expressions for C

and D in terms of T gives:

3(360 − 2T) > 2(3T − 360).

Rearranging this inequality gives T < 150 so, since T is an integer, the largest
possible value of T is 149. This value is achieved when C = 62 and D = 87, which
satisfy the conditions of the problem.
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2. Beth has a black counter and Wendy has a white counter. Beth and Wendy move their
counters on the two boards below according to the starting positions and rules given.
They always move their counters at the same time.
(a) At each turn, each player moves their counter

either one square to the left or one square
to the right. Prove that the black and white
counters can never be in the same square at
the same time.

Hint You may find it helpful to refer to the colours of the squares on the board in
your explanation. (3 marks)

(b) At each turn, each player moves their counter to a triangular
cell which shares one edge with the cell that their counter
is currently in. Can their counters ever be in the same cell
at the same time? (7 marks)

Hint If you think the two counters can never be in the same cell at the same time, you
should give an argument that they cannot be in the same cell at the same time which
works no matter which sequence of moves Beth and Wendy do. If you think the two
counters can be in the same cell at the same time, you should give an example of a
sequence of moves after which they are in the same cell at the same time.

Solution

Commentary

In a problem like this, it is tempting to try to think of all possible ways that the two
counters can move and find a “worst possible” or “best possible” sequence of moves.
Another strategy would be to consider where the counters were the move before they
were in the same square and then “work backwards” to the starting position. It turns
out that, in many cases, both of these strategies are either impractical (because there
are too many possible sequence of moves) or impossible (because, like here, the
counters can keep moving forever without meeting).

Instead, you need to think of some property of the game that means that the counters
can never be in the same square. The hint in part (a) suggests thinking about how the
colour of each counter’s square changes with each move.

Once you have seen that considering the colours of the cells is useful in part (a),
you may want to try a similar strategy in part (b). You need to decide how to colour
the triangular cells so that each move changes the colour of the counter’s cell. You
also need to show that, with your colouring, the black and the white counter start on
different colours.
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(a) Since the colours of the squares on the board alternate, each move (one square to the left
or one square to the right) changes the colour of the square that the counter is in. The two
counters start on different colours so, since each one changes the colour at each turn, they
will always be on different colours. This means that they can never be in the same square
at the same time.

(b) Colour the triangular cells black and white as shown in the diagram.

Then two cells which share an edge are different colours. Hence each move changes the
colour of the counter’s cell.

As can be seen in the diagram, the black and the white counter start on different colours.
Therefore they will always be on different colours, and so cannot be in the same cell at the
same time.
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3. (a) Seth wants to know how many positive whole numbers from one to one hundred
are divisible by two or five. He thinks that the answer is 70 because there are fifty
multiples of two and twenty multiples of five from one to one hundred. Explain
why his answer is too large. (2 marks)

(b) Consider the list of 1800 fractions

1
1800

,
2

1800
, . . . ,

1799
1800

,
1800
1800

.

How many are not in simplest form? Explain your reasoning. (8 marks)
[Note: The fraction 900

1800 is not in simplest form because it can be simplified to 1
2 .]

Solution

Commentary

The main part of the question (part (b)) asks how many of the fractions can be
simplified. How can you tell when a fraction can be simplified? Part (a) should help
you avoid a common trap when counting multiples.

It may help to start by writing out some multiples of 2 and 5. Which numbers will
be listed more than once? This tells you not only why 70 is too large, but also helps
you find the correct answer to Seth’s question.

In part (b) you need to think carefully what exactly you want to count. For example,
1800 is divisible by both 3 and 9, but do you need to count the multiples of 3 and 9
separately?

You also need to extend the reasoning from part (a) to avoid Seth’s trap. You may
find it helpful to use a Venn diagram to represent the number of multiples.

(a) If we list all 50 multiples of 2 and all 20 multiples of 5, all the multiples of 10 will appear
in both lists. Since some numbers are counted twice, the real answer is smaller than 70.

(b) A fraction will not be in simplest form when the numerator shares at least one factor with
1800. Since 1800 = 23 × 32 × 52, we need to count how many of the numbers from 1 to
1800 are divisible by 2, 3 or 5.

Imagine making three separate lists: one containing the multiples of 2, one containing the
multiples of 3 and one containing the multiples of 5. There are 1800

2 = 900 numbers in the
first list, 1800

3 = 600 in the second and 1800
5 = 360 in the third, a total of 1860 numbers.

The multiples of 6, 10 and 15 appear twice, so we need to take away 1800
6 +

1800
10 +

1800
15 = 600.

However, the multiples of 30 have now been taken away three times. But they appear three
times in the original three lists, so they should have only been taken away twice. Hence
we need to add back 1800

30 = 60.
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The required total is therefore 1860 − 600 + 60 = 1320. Thus 1320 of the fractions are not
in simplest form.

Commentary

Try drawing a Venn diagram to show the number of multiples of 2, 3 and 5. Does
that make our calculation clearer?

This idea can be extended to count the total number of elements in more than three
overlapping sets, resulting in what is know as the inclusion-exclusion principle.
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4. The diagram shows a rectangle placed inside a quarter
circle of radius 1, such that its vertices all lie on
the perimeter of the quarter circle and one vertex
coincides with the centre of the (whole) circle.
Let the perimeter of such a rectangle be P.
(a) Show that P = 3 is impossible. (4 marks)
(b) Find the largest possible value of P. You must

fully justify why the value that you find is the
largest.

(4 marks)
Instead a rectangle is placed inside a whole circle of radius 1, such that its vertices all
lie on the circumference of the circle.
(c) If the perimeter of the rectangle is as large as possible, show that the rectangle must

be a square and calculate its perimeter. (2 marks)

Solution

Commentary

Call the sides of the rectangle x and y. It seems reasonable to start by writing some
equations connecting x, y and P. Looking at parts (a) and (b) together, it sounds like
these equations will only have a solution for some values of P.

One vertex of the rectangle is the centre of the circle and the opposite vertex is on
the circumference, so you can use Pythagoras’s Theorem to link x and y with the
radius of the circle. This means that the equation you get will be quadratic, so you
can expect to use the discriminant to determine whether it has any solutions.

In part (b) you need to show two things: that the value of P cannot be larger than the
one you found, but also that there is a rectangle with this value of P.

In part (c), you could start again by writing equations connecting the sides and the
perimeter of the second rectangle. However, if you split the circle into quarters, then
each quarter has a rectangle inscribed in it in the same way as in part (b). You can
therefore use the results you fond in part (b) about the largest possible value of the
perimeter.

In the solution below we start by deriving the quadratic equation which will be used
in all three parts.

Let x and y be the sides of the rectangle. The diagonal of the rectangle is a radius of the circle,
so x2 + y2 = 1. The perimeter of the rectangle is P = 2x + 2y. Substituting y =

P − 2x
2

from
the second equation into the first gives

x2 +

(
P − 2x

2

)2
= 1,
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which is equivalent to
8x2 − (4P)x + (P2 − 4) = 0.

(a) When P = 3 this quadratic equation becomes 8x2 − 12x + 5 = 0. The discriminant is
122 − 4 × 8 × 5 = −16 < 0 so there are no solutions for x. It is therefore not possible that
P = 3.

(b) We now look for values of P for which the quadratic equation 8x2 − (4P)x + (P2 − 4) = 0
has a solution. The discriminant needs to be non-negative, so we need

(4P)2 − 32(P2 − 4) ≥ 0.

This is equivalent to 16P2 ≤ 128 and, since P > 0, we must have P ≤ 2
√

2. For this value
of P, solving the quadratic equation gives x =

√
2

2 and, substituting back into 2x+2y = 2
√

2,
y =

√
2

2 . Thus it is possible that P = 2
√

2 and this is the largest possible value of P.

(c) Let the sides of the rectangle be 2x and 2y. The diagonal of the rectangle is a diameter
of the circle, so x2 + y2 = 1. (Note that this is the same relationship between x and y as
in part (b).) The perimeter of the rectangle is 4x + 4y = 2(2x + 2y), which is twice the
perimeter from part (b).

We know from part (b) that the largest possible value of 2x + 2y is 2
√

2, and that this value
only occurs when x = y =

√
2

2 . Therefore the largest possible value of our perimeter is
4
√

2 and it occurs when the sides of the rectangle are equal, i.e. when it is a square.
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5. Let n be a positive integer. Tracy writes a list of 10 whole numbers between 1 and n
(inclusive). Each number in the list is either equal to, one less than, or one more than
the number before it.
For example, when n = 7:
Her list could be 5, 5, 6, 7, 6, 6, 5, 5, 6, 6 or 4, 4, 3, 2, 1, 1, 1, 1, 1, 1.
Her list could not be 1, 3, 3, 4, 5, 5, 6, 7, 7, 7 or 5, 6, 7, 8, 7, 6, 5, 5, 5, 5.
(a) Suppose that n = 3. Stacey forms a list by copying Tracy’s list, except that whenever

Tracy writes a 1, Stacey writes a 3, and whenever Tracy writes a 3, Stacey writes a
1.
(i) Which lists could Tracy write that would cause her list to be the same as

Stacey’s?
(ii) Explain why Tracy can write as many lists that start 2, 2, 1 as start 2, 2, 3.

(3 marks)
(b) For which n between 1 and 10 (inclusive) is the number of lists that Tracy could

write odd? (7 marks)

Solution

Commentary

There seems to be a lot going on in this question, so it is probably a good idea to
start by writing out some lists. First make sure that you understand the rules. For
n = 3, can you write some of Tracy’s lists and the corresponding Stacey’s lists? What
makes the lists the same? What makes them different?

Part (a)(ii) asks you to consider lists of two different types (those starting 2, 2, 1 and
those starting 2, 2, 3) and to show that there is the same number of each type. A useful
way of showing that two sets contain the same number of elements is to try and pair
them up. Can you see how Stacey can help you? You may well find that thinking in
terms of Tracy’s and Stacey’s lists is the easiest way to write an explanation.

In part (b), you will need to adapt Stacey’s rule slightly. Don’t forget to check and
explain why Stacey’s new rule always generates a valid list (where each number is
either equal to, one less or one more than the number before it). If the total number of
Tracy’s lists is odd, what does that tell you about pairing them up with Stacey’s lists?

(a) (i) If Tracy writes a 3 at any point in her list, then Stacey will write a 1 at that point and
so the lists will be different. Also, is Tracy writes a 1 at any point in her list, Stacey
will write a 3 at that point and so the lists will be different. So, the only list that Tracy
could possibly write that would cause Stacey to write the same list is the list where all
ten entries are 2s. Indeed, this list does cause Stacey to have the same list as Tracy.

(ii) Note that whenever Tracy writes down a valid list of numbers, the list Stacey writes
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down is also a valid list of numbers. For any list L that Tracy can write, let S(L) be
the list that this causes Stacey to write down.

Suppose Tracy writes a list L that starts 2,2,1. Then S(L) will start 2,2,3. We can get
back to L from S(L) by replacing all of the 1s in S(L) with 3s and all of the 3s in
S(L) with 1s. In symbols, this says:

S(S(L)) = L.

So we can pair up each list L that Tracy could write beginning 2,2,1 with the list
S(L) beginning 2,2,3 that Stacey writes. Since this gives every list beginning 2,2,1 a
unique partner beginning 2,2,3 (and vice versa), there must be the same number of
lists beginning 2,2,1 as begin 2,2,3.

(b) Suppose for each n that whenever Tracy writes a list, Stacey copies Tracy’s list except that
whenever Tracy writes k, Stacey writes n+ 1− k. If Tracy writes a list L, write S(L) again
for the list that this causes Stacey to write.

Suppose Tracy writes a list which causes Stacey to write down the same list, i.e. L = S(L).
If an entry in Tracy’s list is k, then we must have k = n + 1 − k, so k = n+1

2 . Therefore, if
n is odd there is one list where Stacey and Tracy write down the same list, namely

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
,

n + 1
2
.

If n is even, then n+1
2 is not a whole number so there are no lists that cause Stacey and

Tracy to write down the same list.

Now, if Tracy writes the list L and this causes Stacey to write the list S(L), we can
recover L from S(L) by replacing each entry of n + 1 − k with k, for 1 ≤ k ≤ n. Since
n + 1 − (n + 1 − k) = k, this is the same as doing Stacey’s operation a second time, so

S(S(L)) = L.

So, all of the possible lists can be broken up into pairs of lists, where we pair the list L with
its partner S(L). If no lists are paired with themselves, this splits all of the possible lists
into pairs, so there must be an even number of possible lists. Therefore, in the case n is
even, there is an even number of possible lists. In the case n is odd, there is one list M that
is paired with itself. So, the number of possible lists except for M is even, and therefore
the total number of possible lists including M is one more than an even number. So, the
total number of possible lists is odd whenever n is odd.

The possible values of n for which Stacey can write an odd number of lists are 1, 3, 5, 7
and 9.
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