The 15th Romanian Master of Mathematics Competition

Day 2: Thursday, February 29th, 2024, Bucharest

Language: English

Problem 4. Fix integers a and b greater than 1. For any positive integer n, let r_n be the (non-negative) remainder that b^n leaves upon division by a^n . Assume there exists a positive integer N such that $r_n < 2^n/n$ for all integers $n \ge N$. Prove that a divides b.

Problem 5. Let BC be a fixed segment in the plane, and let A be a variable point in the plane not on the line BC. Distinct points X and Y are chosen on the rays \overrightarrow{CA} and \overrightarrow{BA} , respectively, such that $\angle CBX = \angle YCB = \angle BAC$. Assume that the tangents to the circumcircle of ABC at B and C meet line XY at P and Q, respectively, such that the points X, P, Y, and Q are pairwise distinct and lie on the same side of BC. Let Ω_1 be the circle through X and P centred on BC. Similarly, let Ω_2 be the circle through Y and Q centred on BC. Prove that Ω_1 and Ω_2 intersect at two fixed points as A varies.

Problem 6. A polynomial P with integer coefficients is square-free if it is not expressible in the form $P = Q^2 R$, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let \mathcal{P}_n be the set of polynomials of the form

$$1 + a_1x + a_2x^2 + \dots + a_nx^n$$

with $a_1, a_2, \ldots, a_n \in \{0, 1\}$. Prove that there exists an integer N so that, for all integers $n \ge N$, more than 99% of the polynomials in \mathcal{P}_n are square-free.

Each problem is worth 7 marks. Time allowed: $4\frac{1}{2}$ hours.