The $15^{\text {th }}$ Romanian Master of Mathematics Competition

Day 2: Thursday, February $29^{\text {th }}, 2024$, Bucharest

Language: English

Problem 4. Fix integers a and b greater than 1. For any positive integer n, let r_{n} be the (non-negative) remainder that b^{n} leaves upon division by a^{n}. Assume there exists a positive integer N such that $r_{n}<2^{n} / n$ for all integers $n \geq N$. Prove that a divides b.

Problem 5. Let $B C$ be a fixed segment in the plane, and let A be a variable point in the plane not on the line $B C$. Distinct points X and Y are chosen on the rays $\overrightarrow{C A}$ and $\overrightarrow{B A}$, respectively, such that $\angle C B X=\angle Y C B=\angle B A C$. Assume that the tangents to the circumcircle of $A B C$ at B and C meet line $X Y$ at P and Q, respectively, such that the points X, P, Y, and Q are pairwise distinct and lie on the same side of $B C$. Let Ω_{1} be the circle through X and P centred on $B C$. Similarly, let Ω_{2} be the circle through Y and Q centred on $B C$. Prove that Ω_{1} and Ω_{2} intersect at two fixed points as A varies.

Problem 6. A polynomial P with integer coefficients is square-free if it is not expressible in the form $P=Q^{2} R$, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let \mathcal{P}_{n} be the set of polynomials of the form

$$
1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

with $a_{1}, a_{2}, \ldots, a_{n} \in\{0,1\}$. Prove that there exists an integer N so that, for all integers $n \geq N$, more than 99% of the polynomials in \mathcal{P}_{n} are square-free.

Each problem is worth 7 marks.
Time allowed: $4 \frac{1}{2}$ hours.

