The 14th Romanian Master of Mathematics Competition

Day 2: Thursday, March 2nd, 2023, Bucharest

Language: English

Problem 4. Given an acute triangle ABC, let H and O be its orthocentre and circumcentre, respectively. Let K be the midpoint of the line segment AH. Also let ℓ be a line through O, and let P and Q be the orthogonal projections of B and C onto ℓ , respectively.

Prove that $KP + KQ \ge BC$.

Problem 5. Let P(x), Q(x), R(x) and S(x) be non-constant polynomials with real coefficients such that P(Q(x)) = R(S(x)). Suppose that the degree of P(x) is divisible by the degree of R(x).

Prove that there is a polynomial T(x) with real coefficients such that

P(x) = R(T(x)).

Problem 6. Let r, g, b be non-negative integers. Let Γ be a connected graph on r + g + b + 1 vertices. The edges of Γ are each coloured red, green or blue. It turns out that Γ has

- a spanning tree in which exactly r of the edges are red,
- a spanning tree in which exactly g of the edges are green and
- a spanning tree in which exactly b of the edges are blue.

Prove that Γ has a spanning tree in which exactly r of the edges are red, exactly g of the edges are green and exactly b of the edges are blue.

(A spanning tree of Γ is a graph which has the same vertices as Γ , with edges which are also edges of Γ , for which there is exactly one path between each pair of different vertices.)

Each problem is worth 7 marks. Time allowed: $4\frac{1}{2}$ hours.