The $14^{\text {th }}$ Romanian Master of Mathematics Competition

Day 2: Thursday, March $2^{\text {nd }}, 2023$, Bucharest

Language: English

Problem 4. Given an acute triangle $A B C$, let H and O be its orthocentre and circumcentre, respectively. Let K be the midpoint of the line segment $A H$. Also let ℓ be a line through O, and let P and Q be the orthogonal projections of B and C onto ℓ, respectively.

Prove that $K P+K Q \geqslant B C$.

Problem 5. Let $P(x), Q(x), R(x)$ and $S(x)$ be non-constant polynomials with real coefficients such that $P(Q(x))=R(S(x))$. Suppose that the degree of $P(x)$ is divisible by the degree of $R(x)$.

Prove that there is a polynomial $T(x)$ with real coefficients such that

$$
P(x)=R(T(x)) .
$$

Problem 6. Let r, g, b be non-negative integers. Let Γ be a connected graph on $r+g+b+1$ vertices. The edges of Γ are each coloured red, green or blue. It turns out that Γ has

- a spanning tree in which exactly r of the edges are red,
- a spanning tree in which exactly g of the edges are green and
- a spanning tree in which exactly b of the edges are blue.

Prove that Γ has a spanning tree in which exactly r of the edges are red, exactly g of the edges are green and exactly b of the edges are blue.
(A spanning tree of Γ is a graph which has the same vertices as Γ, with edges which are also edges of Γ, for which there is exactly one path between each pair of different vertices.)

Each problem is worth 7 marks.
Time allowed: $4 \frac{1}{2}$ hours.

