The $14^{\text {th }}$ Romanian Master of Mathematics Competition

Day 1: Wednesday, March $1^{\text {st }}, 2023$, Bucharest

Language: English

Problem 1. Determine all prime numbers p and all positive integers x and y satisfying

$$
x^{3}+y^{3}=p(x y+p)
$$

Problem 2. Fix an integer $n \geqslant 3$. Let \mathcal{S} be a set of n points in the plane, no three of which are collinear. Given different points A, B, C in \mathcal{S}, the triangle $A B C$ is nice for $A B$ if $\operatorname{Area}(A B C) \leqslant \operatorname{Area}(A B X)$ for all X in \mathcal{S} different from A and B. (Note that for a segment $A B$ there could be several nice triangles.) A triangle is beautiful if its vertices are all in \mathcal{S} and it is nice for at least two of its sides.

Prove that there are at least $\frac{1}{2}(n-1)$ beautiful triangles.
Problem 3. Let $n \geqslant 2$ be an integer, and let f be a $4 n$-variable polynomial with real coefficients. Assume that, for any $2 n$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n}, y_{2 n}\right)$ in the Cartesian plane, $f\left(x_{1}, y_{1}, \ldots, x_{2 n}, y_{2 n}\right)=0$ if and only if the points form the vertices of a regular $2 n$-gon in some order, or are all equal.

Determine the smallest possible degree of f.
(Note, for example, that the degree of the polynomial

$$
g(x, y)=4 x^{3} y^{4}+y x+x-2
$$

is 7 because $7=3+4$.)

Each problem is worth 7 marks.
Time allowed: $4 \frac{1}{2}$ hours.

