The $13^{\text {th }}$ Romanian Master of Mathematics Competition

Day 1: Tuesday, October 12, 2021, Bucharest

Language: English

Problem 1. Let $T_{1}, T_{2}, T_{3}, T_{4}$ be pairwise distinct collinear points such that T_{2} lies between T_{1} and T_{3}, and T_{3} lies between T_{2} and T_{4}. Let ω_{1} be a circle through T_{1} and T_{4}; let ω_{2} be the circle through T_{2} and internally tangent to ω_{1} at T_{1}; let ω_{3} be the circle through T_{3} and externally tangent to ω_{2} at T_{2}; and let ω_{4} be the circle through T_{4} and externally tangent to ω_{3} at T_{3}. A line crosses ω_{1} at P and W, ω_{2} at Q and R, ω_{3} at S and T, and ω_{4} at U and V, the order of these points along the line being P, Q, R, S, T, U, V, W. Prove that $P Q+T U=R S+V W$.

Problem 2. Xenia and Sergey play the following game. Xenia thinks of a positive integer N not exceeding 5000 . Then she fixes 20 distinct positive integers $a_{1}, a_{2}, \ldots, a_{20}$ such that, for each $k=1,2, \ldots, 20$, the numbers N and a_{k} are congruent modulo k. By a move, Sergey tells Xenia a set S of positive integers not exceeding 20 , and she tells him back the set $\left\{a_{k}: k \in S\right\}$ without spelling out which number corresponds to which index. How many moves does Sergey need to determine for sure the number Xenia thought of?

Problem 3. A number of 17 workers stand in a row. Every contiguous group of at least 2 workers is a brigade. The chief wants to assign each brigade a leader (which is a member of the brigade) so that each worker's number of assignments is divisible by 4 . Prove that the number of such ways to assign the leaders is divisible by 17 .

Each of the three problems is worth 7 marks.
Time allowed $4 \frac{1}{2}$ hours.

