The 12^{th} Romanian Master of Mathematics Competition

Day 2: Saturday, February 29, 2020, Bucharest

Language: English

Problem 4. Let \mathbb{N} be the set of all positive integers. A subset A of \mathbb{N} is *sum-free* if, whenever x and y are (not necessarily distinct) members of A, their sum x + y does not belong to A.

Determine all surjective functions $f \colon \mathbb{N} \to \mathbb{N}$ such that, for each sumfree subset A of \mathbb{N} , the image $\{f(a) \colon a \in A\}$ is also sum-free.

Note: a function $f : \mathbb{N} \to \mathbb{N}$ is surjective if, for every positive integer n, there exists a positive integer m such that f(m) = n.

Problem 5. A *lattice point* in the Cartesian plane is a point whose coordinates are both integers. A *lattice polygon* is a polygon all of whose vertices are lattice points.

Let Γ be a convex lattice polygon. Prove that Γ is contained in a convex lattice polygon Ω such that the vertices of Γ all lie on the boundary of Ω , and exactly one vertex of Ω is not a vertex of Γ .

Problem 6. For each integer $n \ge 2$, let F(n) denote the greatest prime factor of n. A strange pair is a pair of distinct primes p and q such that there is no integer $n \ge 2$ for which F(n)F(n+1) = pq.

Prove that there exist infinitely many strange pairs.

Each of the three problems is worth 7 points. Time allowed $4\frac{1}{2}$ hours.