Next Selection Test: Paper 4

Oundle School

$1^{\text {st }}$ June 2011

1. Let A be the set of all integers of the form $a^{2}+13 b^{2}$, where a and b are integers and b is nonzero. Prove that there are infinitely many pairs of integers x, y such that $x^{13}+y^{13} \in A$ but $x+y \notin A$.
2. 2500 chess kings are to be placed on a 100×100 chess board so that:
(a) no king can capture any other one (ie. no two kings are placed in two squares which share a common vertex);
(b) each row and each column contains exactly 25 kings.

In how many ways is this possible?
3. Let $A B C$ be a scalene triangle. Let l_{A} be the tangent to the nine-point circle at the foot of the perpendicular from A to $B C$, and let l_{A}^{\prime} be the tangent to the nine-point circle from the midpoint of $B C$. The lines l_{A} and l_{A}^{\prime} intersect at A^{\prime}; we define B^{\prime} and C^{\prime} similarly.
Show that the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent.

Each question is worth seven marks.
Time: 4 hours, 30 minutes.

