NST 4

2 June 2010

1. Consider the sequence (a_i) such that $a_0 = 4$, $a_1 = 22$ and

$$a_n - 6a_{n-1} + a_{n-2} = 0$$

for $n \geq 2$. Prove that there are integral sequences $(x_i), (y_i)$ such that

$$a_n = \frac{y_n^2 + 7}{x_n - y_n}$$

for every $n \ge 0$.

- 2. The triangle ABC is not isosceles. Let the inscribed circle Γ have centre I and touch the sides at A_1, B_1 and C_1 in the natural notation. Let AA_1 meet Γ again at A_2 , and define B_2 in similar fashion. The points A_3 on B_1C_1 and B_3 on A_1C_1 are such that A_1A_3 and B_1B_3 are angle bisectors in triangle $A_1B_1C_1$. Prove the following statements.
 - (a) A_2A_3 bisects $\angle B_1A_2C_1$.
 - (b) Let P and Q be the intersection points of the circumcircles of triangles $A_1A_2A_3$ and $B_1B_2B_3$, then I lies on the line PQ.
- 3. The list a_1, a_2, \ldots, a_n is a permutation of $1, 2, \ldots, n$. A move is a rearrangement of a permutation where two consectutive runs are exchanged. To be explicit one could apply a move replacing

$$a_1, \ldots, a_i, \underbrace{a_{i+1}, \ldots, a_{i+p}}_A, \underbrace{a_{i+p+1}, \ldots, a_{i+q}}_B, a_{i+q+1}, \ldots, a_n$$

by

$$a_1, \ldots, a_i, \underbrace{a_{i+p+1}, \ldots, a_{i+q}}_B, \underbrace{a_{i+1}, \ldots, a_{i+p}}_A, a_{i+q+1}, \ldots, a_n.$$

Find the least number of moves necessary to reorder n, n - 1, ..., 1 into 1, 2, ..., n.

Each problem is worth 7 points. Time: 4 hours 30 minutes.