NST 4

2 June 2010

1. Consider the sequence $\left(a_{i}\right)$ such that $a_{0}=4, a_{1}=22$ and

$$
a_{n}-6 a_{n-1}+a_{n-2}=0
$$

for $n \geq 2$. Prove that there are integral sequences $\left(x_{i}\right),\left(y_{i}\right)$ such that

$$
a_{n}=\frac{y_{n}^{2}+7}{x_{n}-y_{n}}
$$

for every $n \geq 0$.
2. The triangle $A B C$ is not isosceles. Let the inscribed circle Γ have centre I and touch the sides at A_{1}, B_{1} and C_{1} in the natural notation. Let $A A_{1}$ meet Γ again at A_{2}, and define B_{2} in similar fashion. The points A_{3} on $B_{1} C_{1}$ and B_{3} on $A_{1} C_{1}$ are such that $A_{1} A_{3}$ and $B_{1} B_{3}$ are angle bisectors in triangle $A_{1} B_{1} C_{1}$. Prove the following statements.
(a) $A_{2} A_{3}$ bisects $\angle B_{1} A_{2} C_{1}$.
(b) Let P and Q be the intersection points of the circumcircles of triangles $A_{1} A_{2} A_{3}$ and $B_{1} B_{2} B_{3}$, then I lies on the line $P Q$.
3. The list $a_{1}, a_{2}, \ldots, a_{n}$ is a permutation of $1,2, \ldots, n$. A move is a rearrangement of a permutation where two consectutive runs are exchanged. To be explicit one could apply a move replacing

$$
a_{1}, \ldots, a_{i}, \underbrace{a_{i+1}, \ldots a_{i+p}}_{A}, \underbrace{a_{i+p+1}, \ldots a_{i+q}}_{B}, a_{i+q+1}, \ldots, a_{n}
$$

by

$$
a_{1}, \ldots, a_{i}, \underbrace{a_{i+p+1}, \ldots a_{i+q}}_{B}, \underbrace{a_{i+1}, \ldots a_{i+p}}_{A}, a_{i+q+1}, \ldots, a_{n} .
$$

Find the least number of moves necessary to reorder $n, n-1, \ldots, 1$ into $1,2, \ldots, n$.

