1. The acute triangle $A B C$ with $A B \neq A C$ has circumcircle Γ, circumcenter O, and orthocenter H. The midpoint of $B C$ is M, and the extension of the median $A M$ intersects Γ at N. The circle of diameter $A M$ intersects Γ again at A and P. Show that the lines $A P, B C$, and $O H$ are concurrent if and only if $A H=H N$.
2. Given a positive real number t, determine the sets A of real numbers containing t, for which there exists a set B (depending on A) with $|B| \geq 4$ such that $A B=\{a b \mid a \in A, b \in B\}$ is a finite arithmetic progression.
3. Let $a_{1}<a_{2}<\cdots<a_{n}$ be pairwise coprime positive integers with a_{1} being prime and $a_{1} \geq n+2$. On the segment $I=\left[0, \prod_{i} a_{i}\right]$ of the real line, mark all integers which are divisible by at least one of the numbers $a_{1}, a_{2}, \ldots, a_{n}$. These points break I into a number of smaller segments. Prove that the sum of the squares of the lengths of these segments is divisible by a_{1}.
