Next Selection Test: Paper 3

Oundle School

$31^{\text {st }}$ May 2011

1. If X is a set of integers, define $D(X)$ to be the set of differences between elements of X :

$$
D(X)=\{n-m \mid m, n \in X, m<n\} .
$$

Find the largest natural number N, for which the following is true: if we partition the natural numbers into N disjoint infinite sets X_{1}, \ldots, X_{N}, then the intersection

$$
D\left(X_{1}\right) \cap \cdots \cap D\left(X_{N}\right)
$$

must have infinitely many elements.
2. (a) Given a positive integer n, prove that there do not exist two distinct integers strictly between n^{2} and $(n+1)^{2}$, whose product is a square.
(b) Given an integer $a>2$, prove that there exist a distinct integers strictly between n^{a} and $(n+1)^{a}$, whose product is an a th power, for all but a finite number of positive integers n.
3. Let $a, b, c>0$ and $a+b+c=3$. Prove that

$$
\frac{1}{a \sqrt{2\left(a^{2}+b c\right)}}+\frac{1}{b \sqrt{2\left(b^{2}+c a\right)}}+\frac{1}{c \sqrt{2\left(c^{2}+a b\right)}} \geq \frac{1}{a+b c}+\frac{1}{b+c a}+\frac{1}{c+a b} .
$$

Each question is worth seven marks. Time: 4 hours, 30 minutes.

