1. Let $n \geq 2$ be an integer, and let A_{n} be the set

$$
A_{n}=\left\{2^{n}-2^{k} \mid k \in \mathbb{Z}, 0 \leq k<n\right\} .
$$

Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily different) elements of A_{n}.
2. Let $A B C$ be a triangle. The points K, L and M lie on the segments $B C, C A$ and $A B$ respectively, and the three lines $A K, B L$ and $C M$ are concurrent. Prove that it is possible to choose two of the triangles $A L M, B M K$ and $C K L$ such that their inradii sum to at least the inradius of $A B C$.
3. Let M be a set of $n \geq 4$ points in the plane, no three of which are collinear. Initially these points are connected with n line segments so that each point is the endpoint of exactly two segments. Then, at each step, one may chose two segments $A B$ and $C D$ sharing a common interior point, and replace them by two segments $A C$ and $B D$ provided that neither is present prior to the replacement. Prove that it is impossible to perform $n^{3} / 4$ such moves.

