Next Selection Test: Paper 2

Oundle School

$30^{\text {th }}$ May 2011

1. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that:
(a) $f(x+f(x+2 y))=f(2 x)+f(2 y)$ for all integers x, y;
(b) $f(0)=2$.
2. Let n be a positive integer, and let \mathcal{L} be a collection of n lines in the plane in general position (which means that no three are concurrent and no two are parallel). Consider the interiors of the incircles of the triangles formed by each set of three lines in \mathcal{L}.
For each n, what is the largest and smallest possible number of these circle interiors which are intersected by no lines from \mathcal{L} ?
3. Let $A B C$ be a triangle with a right angle at C. Let $C N$ be an altitude. A circle Γ is tangent to the line segments $B N, C N$, and the circumcircle of $A B C$. If D is where Γ kisses $B N$, prove that $C D$ bisects $B C N$.

Each question is worth seven marks.
Time: 4 hours, 30 minutes.

