NST 1

Tonbridge School, 24 May 2015

1. Let n points be given inside a rectangle R such that no two of them line on a line parallel to the sides of R. The rectangle is to be dissected into smaller rectangles with sides parallel to the sides of R in such a way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect R into at least $n+1$ smaller rectangles.
2. Define the function $f:(0,1) \longrightarrow(0,1)$ by

$$
f(x)=\left\{\begin{array}{l}
x+\frac{1}{2} \text { if } x<\frac{1}{2} \\
x^{2} \text { if } x \geq \frac{1}{2} .
\end{array}\right.
$$

Let a and b be two real numbers such that $0<a<b<1$. We define the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ by $a_{0}=a, b_{0}=b$, and $a_{n}=f\left(a_{n-1}\right)$, $b_{n}=f\left(b_{n-1}\right)$ for $n>0$. Show that there is a positive integer n such that

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)<0 .
$$

3. Consider a circle Γ with three fixed points A, B and C on Γ. Also fix a real number $\lambda \in(0,1)$. Let P denote a variable point on Γ with $P \notin\{A, B, C\}$, and let M be the point on the segment $C P$ such that $C M=\lambda \cdot C P$. Let Q be the second point of intersection of the circumcircles of the triangles $A M P$ and $B M C$. Prove that, as P varies, the point Q lies on a fixed circle
