Next Selection Test: Paper 1

Oundle School

$29^{\text {th }}$ May 2011

1. Circles Γ_{1} and Γ_{2} meet at M and N. Let A be on Γ_{1} and D on Γ_{2}. The lines $A M$ and $A N$ meet Γ_{2} again at B and C respectively; the line $D M$ and $D N$ meet Γ_{1} again at E and F, respectively. Assume that M, N, F, A, E are in cyclic order around Γ_{1}, and that $A B$ and $D E$ are congruent. Prove that A, F, C and D lie on a circle whose centre does not depend on the position of A and D on the circles.
2. Let $n \geq 2$ be an integer, and let a_{1}, \ldots, a_{n} be positive reals. We define the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$from the positive reals to the positive reals by the formula

$$
f(x)=\frac{a_{1}+x}{a_{2}+x}+\frac{a_{2}+x}{a_{3}+x}+\cdots+\frac{a_{n-1}+x}{a_{n}+x}+\frac{a_{n}+x}{a_{1}+x} .
$$

Show that f is a decreasing function of x.
3. Find the smallest number n such that there exist polynomials f_{1}, \ldots, f_{n} with rational coefficients satisfying

$$
x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots+f_{n}(x)^{2} .
$$

Each question is worth seven marks.
Time: 4 hours, 30 minutes.

