Problem 4. Let $A B C$ be an acute-angled triangle with orthocentre H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.

Problem 5. Let $\mathbb{Q}_{>0}$ be the set of positive rational numbers. Let $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ be a function satisfying the following three conditions:
(i) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x) f(y) \geq f(x y)$;
(ii) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x+y) \geq f(x)+f(y)$;
(iii) there exists a rational number $a>1$ such that $f(a)=a$.

Prove that $f(x)=x$ for all $x \in \mathbb{Q}_{>0}$.

Problem 6. Let $n \geq 3$ be an integer, and consider a circle with $n+1$ equally spaced points marked on it. Consider all labellings of these points with the numbers $0,1, \ldots, n$ such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels $a<b<c<d$ with $a+d=b+c$, the chord joining the points labelled a and d does not intersect the chord joining the points labelled b and c. Let M be the number of beautiful labellings, and let N be the number of ordered pairs (x, y) of positive integers such that $x+y \leq n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1
$$

