Problem 1. Prove that for any pair of positive integers k and n, there exist k positive integers $m_{1}, m_{2}, \ldots, m_{k}$ (not necessarily different) such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

Problem 2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red points and 2014 blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied:

- no line passes through any point of the configuration;
- no region contains points of both colours.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good arrangement of k lines.

Problem 3. Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcentre of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.

The excircle of triangle $A B C$ opposite the vertex A is the circle that is tangent to the line segment $B C$, to the ray $A B$ beyond B, and to the ray $A C$ beyond C. The excircles opposite B and C are similarly defined.

