4. An acute-angled triangle $\triangle A B C$ is given, and A_{1}, B_{1}, C_{1} are the midpoints of sides $B C, C A, A B$ respectively. The internal angle bisector of $\angle A C_{1} C$ meets $A C$ at L, and the internal angle bisector of $\angle C C_{1} B$ meets $B C$ at K. The line $L K$ intersects $B_{1} C_{1}$ at A_{2}, and $A_{1} C_{1}$ at B_{2}. Prove that the lines $A A_{2}, B B_{2}, C C_{1}$ are concurrent.
5. Let $n>1$ be a given integer. Define

$$
a_{k}:=\left\lfloor\frac{n^{k}}{k}\right\rfloor, \quad \text { for each } k \geq 1 .
$$

Prove that infinitely many terms of the sequence $\left(a_{k}\right)$ are odd.
[For a real number $x,\lfloor x\rfloor$ is the largest integer not greater than x.]
6. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(2 m+f(m)+f(m) f(n))=n f(m)+m
$$

for all $m, n \in \mathbb{Z}$.

