FST 22010
 Trinity College, Cambridge

$12^{\text {th }}$ April 2010
4. Find all solutions to

$$
p(p+1)+q(q+1)=n(n+1)
$$

where p and q are prime numbers and n is a positive integer.
5. Let S be a set of 1953 points in the plane. Every two points of S are at least distance 1 apart. Prove that S contains a subset T of 217 points, every two at least distance $\sqrt{3}$ apart.
6. The monic polynomial

$$
P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

of degree $n>1$ has n distinct negative real roots. Prove that

$$
a_{1} P(1)>2 n^{2} a_{0} .
$$

Each question is worth seven marks.
Time: 4 hours, 30 minutes.

