FST1

28.3.15

1. N and K are given positive integers. Some number (at least $N+K$) of students needs to be split into groups. Alison splits the students into N non-empty groups. Hannah splits the students into $N+K$ non-empty groups. Let C be the number of students in a strictly smaller group in Hannah's grouping than in Alison's.
Find the smallest possible value of C.
2. Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of integers satisfying

$$
a_{0}=1, a_{1}=3, \text { and } a_{n+2}=1+\left\lfloor\frac{a_{n+1}^{2}}{a_{n}}\right\rfloor \text { for all } n \geq 0
$$

Prove that $a_{n} a_{n+2}-a_{n+1}^{2}=2^{n}$ for every $n \geq 0$.
3. Let $\triangle A B C$ be a triangle. Let P_{1} and P_{2} be points on the side $A B$ such that P_{2} lies on the segment $B P_{1}$ and $A P_{1}=B P_{2}$. Similarly, let Q_{1} and Q_{2} be points on the side $B C$ such that Q_{2} lies on the segment $B Q_{1}$ and $B Q_{2}=C Q_{1}$. The segments $P_{1} Q_{2}$ and $P_{2} Q_{1}$ meet at R, and the circumcircles of $\triangle P_{1} P_{2} R$ and $\triangle Q_{1} Q_{2} R$ meet again at S, inside triangle $\triangle P_{1} Q_{1} R$. Finally, let M be the midpoint of the side $A C$.

Prove that the angles $\angle P_{1} R S$ and $\angle Q_{1} R M$ are equal.

