UK IMO FST1

Trinity College, Cambridge

9 April 2005

- 1. An infinite sequence a_0, a_1, a_2, \ldots of real numbers satisfies the condition $a_n = |a_{n+1} a_{n+2}|$ for every $n \ge 0$ with a_0, a_1 positive and distinct. Can this sequence be bounded?
- 2. Let $\tau(n)$ denote the number of positive divisors of the positive integer n. Prove that there are infinitely many positive integers a such that $\tau(an) = n$ has no positive integer solution n.
- 3. Let P be a convex polygon. Prove that there is a convex hexagon which is contained in P and which occupies at least 75% of the area of P.