First Selection Test

April 2003

1. Consider triangle $A B C$. Let U, V, W be points such that U is on the line through B and C, V is on the line through C and A, W is on the line through A and B. It is given that $A U, B V$ and $C W$ are concurrent at a point P. Also $A U$ is a median of the triangle, $B V$ is an altitude and $C W$ is the internal angle bisector of $\angle B C A$. Suppose that P lies on the perpendicular bisector of at least one of the sides of triangle $A B C$. Prove that triangle $A B C$ is equilateral.
2. Find all positive integers n such that the equation

$$
x+y+u+v=n \sqrt{x y u v}
$$

has a positive integer solution x, y, u, v.
3. Suppose that m, n are positive integers with $m<2002$ and $n<2003$. We are given 2002×2003 distinct real numbers. These real numbers are entered into the 1×1 cells of a 2002×2003 rectangular "chessboard" which has 2002 rows and 2003 columns with exactly one number in each cell. A little square is called "feeble" if the number it contains is simultaneously less than at least m numbers written in cells in the same column, and less than at least n numbers written in cells in the same row. Let there be s feeble squares for a given way of entering the numbers. Minimize s (as a function of m and n) over all possible ways of entering the numbers.

