

9th Chinese Girls' Mathematics Olympiad Shijiazhuang, China

Day I 8:00 AM - 12:00 PM August 10, 2010

1. Let n be an integer greater than two, and let A_1, A_2, \ldots, A_{2n} be pairwise distinct subsets of $\{1, 2, \ldots, n\}$. Determine the maximum value of

$$\sum_{i=1}^{2n} \frac{|A_i \cap A_{i+1}|}{|A_i| \cdot |A_{i+1}|}.$$

(Here we set $A_{2n+1} = A_1$. For a set X, let |X| denote the number of elements in X.)

2. In triangle ABC, AB = AC. Point D is the midpoint of side BC. Point E lies outside the triangle ABC such that $CE \perp AB$ and BE = BD. Let M be the midpoint of segment BE. Point F lies on the minor arc \widehat{AD} of the circumcircle of triangle ABD such that $MF \perp BE$. Prove that $ED \perp FD$.

- 3. Prove that for every given positive integer n, there exists a prime p and an integer m such that
 - (a) $p \equiv 5 \pmod{6}$;
 - (b) $p \nmid n$;
 - (c) $n \equiv m^3 \pmod{p}$.
- 4. Let x_1, x_2, \ldots, x_n be real numbers with $x_1^2 + x_2^2 + \cdots + x_n^2 = 1$. Prove that

$$\sum_{k=1}^{n} \left(1 - \frac{k}{\sum_{i=1}^{n} i x_i^2} \right)^2 \cdot \frac{x_k^2}{k} \le \left(\frac{n-1}{n+1} \right)^2 \sum_{k=1}^{n} \frac{x_k^2}{k}.$$

Determine when does the equality hold?

Copyright © Committee on the Chinese Mathematics Olympiad, Mathematical Association of China

$9^{ m th}$ Chinese Girls' Mathematics Olympiad Shijiazhuang, China Day II 8:00 AM - 12:00 PM August 11, 2010

- 5. Let f(x) and g(x) be strictly increasing linear functions from \mathbb{R} to \mathbb{R} such that f(x) is an integer if and only if g(x) is an integer. Prove that for any real number x, f(x) g(x) is an integer.
- 6. In acute triangle ABC, AB > AC. Let M be the midpoint of side BC. The exterior angle bisector of $\angle BAC$ meet ray BC at P. Point K and F lie on line PA such that $MF \perp BC$ and $MK \perp PA$. Prove that $BC^2 = 4PF \cdot AK$.

- 7. For given integer $n \geq 3$, set $S = \{p_1, p_2, \ldots, p_m\}$ consists of permutations p_i of $(1, 2, \ldots, n)$. Suppose that among every three distinct numbers in $\{1, 2, \ldots, n\}$, one of these number does not lie in between the other two numbers in every permutations p_i $(1 \leq i \leq m)$. (For example, in the permutation (1, 3, 2, 4), 3 lies in between 1 and 4, and 4 does not lie in between 1 and 2.) Determine the maximum value of m.
- 8. Determine the least odd number a > 5 satisfying the following conditions: There are positive integers m_1, m_2, n_1, n_2 such that $a = m_1^2 + n_1^2$, $a^2 = m_2^2 + n_2^2$, and $m_1 n_1 = m_2 n_2$.