$9^{\text {th }}$ Chinese Girls' Mathematics Olympiad

Shijiazhuang, China
Day I 8:00 AM - 12:00 PM
August 10, 2010

1. Let n be an integer greater than two, and let $A_{1}, A_{2}, \ldots, A_{2 n}$ be pairwise distinct subsets of $\{1,2, \ldots, n\}$. Determine the maximum value of

$$
\sum_{i=1}^{2 n} \frac{\left|A_{i} \cap A_{i+1}\right|}{\left|A_{i}\right| \cdot\left|A_{i+1}\right|}
$$

(Here we set $A_{2 n+1}=A_{1}$. For a set X, let $|X|$ denote the number of elements in X.)
2. In triangle $A B C, A B=A C$. Point D is the midpoint of side $B C$. Point E lies outside the triangle $A B C$ such that $C E \perp A B$ and $B E=B D$. Let M be the midpoint of segment $B E$. Point F lies on the minor arc $\widehat{A D}$ of the circumcircle of triangle $A B D$ such that $M F \perp B E$. Prove that $E D \perp F D$.

3. Prove that for every given positive integer n, there exists a prime p and an integer m such that
(a) $p \equiv 5(\bmod 6)$;
(b) $p \nmid n$;
(c) $n \equiv m^{3}(\bmod p)$.
4. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers with $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. Prove that

$$
\sum_{k=1}^{n}\left(1-\frac{k}{\sum_{i=1}^{n} i x_{i}^{2}}\right)^{2} \cdot \frac{x_{k}^{2}}{k} \leq\left(\frac{n-1}{n+1}\right)^{2} \sum_{k=1}^{n} \frac{x_{k}^{2}}{k}
$$

Determine when does the equality hold?

Copyright © Committee on the Chinese Mathematics Olympiad, Mathematical Association of China

$9^{\text {th }}$ Chinese Girls' Mathematics Olympiad
Shijiazhuang, China
Day II 8:00 AM - 12:00 PM
August 11, 2010

5. Let $f(x)$ and $g(x)$ be strictly increasing linear functions from \mathbb{R} to \mathbb{R} such that $f(x)$ is an integer if and only if $g(x)$ is an integer. Prove that for any real number $x, f(x)-g(x)$ is an integer.
6. In acute triangle $A B C, A B>A C$. Let M be the midpoint of side $B C$. The exterior angle bisector of $\angle B A C$ meet ray $B C$ at P. Point K and F lie on line $P A$ such that $M F \perp B C$ and $M K \perp P A$. Prove that $B C^{2}=4 P F \cdot A K$.

7. For given integer $n \geq 3$, set $S=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ consists of permutations p_{i} of $(1,2, \ldots, n)$. Suppose that among every three distinct numbers in $\{1,2, \ldots, n\}$, one of these number does not lie in between the other two numbers in every permutations $p_{i}(1 \leq i \leq m)$. (For example, in the permutation $(1,3,2,4), 3$ lies in between 1 and 4 , and 4 does not lie in between 1 and 2.) Determine the maximum value of m.
8. Determine the least odd number $a>5$ satisfying the following conditions: There are positive integers $m_{1}, m_{2}, n_{1}, n_{2}$ such that $a=m_{1}^{2}+n_{1}^{2}, a^{2}=m_{2}^{2}+n_{2}^{2}$, and $m_{1}-n_{1}=m_{2}-n_{2}$.
