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hours.

Instructions • Full written solutions - not just answers - are

required, with complete proofs of any assertions

you may make. Marks awarded will depend on the

clarity of your mathematical presentation. Work

in rough first, and then write up your best attempt.

Do not hand in rough work.

• One complete solution will gain more credit than

several unfinished attempts. It is more important

to complete a small number of questions than to

try all the problems.

• Each question carries 10 marks. However, earlier

questions tend to be easier. In general you are

advised to concentrate on these problems first.

• The use of rulers and compasses is allowed, but

calculators and protractors are forbidden.

• Start each question on a fresh sheet of paper. Write

on one side of the paper only. On each sheet of

working write the number of the question in the

top left hand corner and your name, initials and

school in the top right hand corner.

• Complete the cover sheet provided and attach it to

the front of your script, followed by your solutions

in question number order.

• Staple all the pages neatly together in the top left
hand corner.

Do not turn over until told to do so.
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1. Let n be an integer greater than 6. Prove that if n − 1 and n + 1 are
both prime, then n2(n2 +16) is divisible by 720. Is the converse true?

2. Adrian teaches a class of six pairs of twins. He wishes to set up teams
for a quiz, but wants to avoid putting any pair of twins into the same
team. Subject to this condition:

i) In how many ways can he split them into two teams of six?

ii) In how many ways can he split them into three teams of four?

3. In the cyclic quadrilateral ABCD, the diagonal AC bisects the angle
DAB. The side AD is extended beyond D to a point E. Show that
CE = CA if and only if DE = AB.

4. The equilateral triangle ABC has sides of integer length N . The
triangle is completely divided (by drawing lines parallel to the sides of
the triangle) into equilateral triangular cells of side length 1.

A continuous route is chosen, starting inside the cell with vertex A

and always crossing from one cell to another through an edge shared
by the two cells. No cell is visited more than once. Find, with proof,
the greatest number of cells which can be visited.

5. Let G be a convex quadrilateral. Show that there is a point X in the
plane of G with the property that every straight line through X divides
G into two regions of equal area if and only if G is a parallelogram.

6. Let T be a set of 2005 coplanar points with no three collinear. Show
that, for any of the 2005 points, the number of triangles it lies strictly
within, whose vertices are points in T , is even.


