Problem 1. Let $A B C$ be an acute triangle with $A B=A C$, let D be the midpoint of the side $A C$, and let γ be the circumcircle of the triangle $A B D$. The tangent of γ at A crosses the line $B C$ at E. Let O be the circumcentre of the triangle $A B E$. Prove that the midpoint of the segment $A O$ lies on γ.

Problem 2. Denote $\mathbb{Z}_{>0}=\{1,2,3, \ldots\}$ the set of all positive integers. Determine all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for each positive integer n,
i) $\sum_{k=1}^{n} f(k)$ is a perfect square, and
ii) $f(n)$ divides n^{3}.

Problem 3. Let k be a positive integer. Determine the least integer n, with $n \geqslant k+1$, for which the game below can be played indefinitely:

Consider n boxes, labelled $b_{1}, b_{2}, \ldots, b_{n}$. For each index i, box b_{i} contains initially exactly i coins. At each step, the following three substeps are performed in order:
(1) Choose $k+1$ boxes;
(2) Of these $k+1$ boxes, choose k and remove at least half of the coins from each, and add to the remaining box, if labelled b_{i}, a number of i coins.
(3) If one of the boxes is left empty, the game ends; otherwise, go to the next step.

Problem 4. Let $a_{1}=2$ and, for every positive integer n, let a_{n+1} be the smallest integer strictly greater than a_{n} that has more positive divisors than a_{n} has. Prove that $2 a_{n+1}=3 a_{n}$ only for finitely many indices n.

Time: $4^{1} / 2$ hours
Each problem is worth 10 marks

