Problem 1. Given a positive integer k, show that there exists a prime p such that one can choose distinct integers $a_{1}, a_{2}, \ldots, a_{k+3} \in\{1,2, \ldots p-1\}$ such that p divides $a_{i} a_{i+1} a_{i+2} a_{i+3}-i$ for all $i=$ $1,2, \ldots k$.

Problem 2. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined inductively by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$. Given an integer $n \geq 2$, determine the smallest size of a set S of integers such that for every $k=2,3, \ldots, n$ there exists some $x, y \in S$ such that $x-y=F_{k}$.

Problem 3. Let I and I_{A} be the integer and the A-excenter of an acute-angled triangle $A B C$ with $A B<A C$. Let the incircle meet $B C$ at D. The line $A D$ meets $B I_{A}$ and $C I_{A}$ at E and F, respectively. Prove that the circumcircles of triangles $A I D$ and $I_{A} E F$ are tangent to each other.

