Problem 1. The infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of (not necessarily different) integers has the following properties: $0 \leq a_{i} \leq i$ for all integers $i \geq 0$, and

$$
\binom{k}{a_{0}}+\binom{k}{a_{1}}+\cdots+\binom{k}{a_{k}}=2^{k}
$$

for all integers $k \geq 0$.
Prove that all integers $N \geq 0$ occur in the sequence (that is, for all $N \geq 0$, there exists $i \geq 0$ with $a_{i}=N$.

Problem 2. We say that a set S of integers is rootiful if, for any positive integer n and any $a_{0}, a_{1}, \ldots, a_{n} \in S$, all integer roots of the polynomial $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ are also in S.
Find all rootiful sets of integers that contain all numbers of the form $2^{a}-2^{b}$ for positive integers a and b.

Problem 3. Let $A B C D E$ be a convex pentagon with $C D=D E$ and $\angle E D C \neq 2 \cdot \angle A D B$. Suppose that a point P is located in the interior of the pentagon such that $A P=A E$ and $B P=B C$.
Prove that P lies on the diagonal $C E$ if and only if

$$
\operatorname{area}(B C D)+\operatorname{area}(A D E)=\operatorname{area}(A B D)+\operatorname{area}(A B P)
$$

