Friday, September 18, 2020

Problem 1. The infinite sequence a_0, a_1, a_2, \ldots of (not necessarily different) integers has the following properties: $0 \le a_i \le i$ for all integers $i \ge 0$, and

$$\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k$$

for all integers $k \geq 0$.

Prove that all integers $N \ge 0$ occur in the sequence (that is, for all $N \ge 0$, there exists $i \ge 0$ with $a_i = N$.

Problem 2. We say that a set S of integers is *rootiful* if, for any positive integer n and any $a_0, a_1, \ldots, a_n \in S$, all integer roots of the polynomial $a_0 + a_1x + \cdots + a_nx^n$ are also in S.

Find all rootiful sets of integers that contain all numbers of the form $2^a - 2^b$ for positive integers a and b.

Problem 3. Let ABCDE be a convex pentagon with CD = DE and $\angle EDC \neq 2 \cdot \angle ADB$. Suppose that a point P is located in the interior of the pentagon such that AP = AE and BP = BC.

Prove that P lies on the diagonal CE if and only if

 $\operatorname{area}(BCD) + \operatorname{area}(ADE) = \operatorname{area}(ABD) + \operatorname{area}(ABP).$

Language: English Questions must not be published