AUS and UNK
 2017 IMO Final Team Training
 Exam F5

- Each question is worth 7 points.
- Time allowed is $4 \frac{1}{2}$ hours.
- No books, notes or calculators permitted.
- Any questions must be submitted in writing within the first half hour of the exam.

1. Point A_{1} lies inside acute scalene triangle $A B C$ and satisfies

$$
\angle A_{1} A B=\angle A_{1} B C \quad \text { and } \quad \angle A_{1} A C=\angle A_{1} C B
$$

Points B_{1} and C_{1} are similarly defined. Let G and H be the centroid and orthocentre, repsectively, of triangle $A B C$.
Prove that A_{1}, B_{1}, C_{1}, G, and H all lie on a common circle.
2. (a) Prove that for every positive integer n, there exists a fraction $\frac{a}{b}$ where a and b are integers satisfying $0<b<\sqrt{n}+1$ and $\sqrt{n} \leq \frac{a}{b} \leq \sqrt{n+1}$.
(b) Prove there are infinitely many positive integers n such that there is no fraction $\frac{a}{b}$ where a and b are integers satisfying $0<b<\sqrt{n}$ and $\sqrt{n} \leq \frac{a}{b} \leq \sqrt{n+1}$.
3. Let n be a given positive integer. Determine the smallest positive integer k with the following property:

It is possible to mark k cells on a $2 n \times 2 n$ square array so that there exists a unique partition of the board into 1×2 and 2×1 dominoes, none of which contains two marked cells.

