AUSTRALIAN MATHEMATICAL OLYMPIAD COMMITTEE

2014 IMO Team Training

Exam T16

- Each question is worth 7 points.
- Time allowed is $4 \frac{1}{2}$ hours.
- No books, notes or calculators permitted
- Any questions must be submitted in writing within the first half hour of the exam.

The 2014 Mathematical Ashes: AUS v UNK

1. Let D be the point on side $B C$ such that $A D$ bisects angle $\angle B A C$. Let E and F be the incentres of triangles $A D C$ and $A D B$, respectively. Let ω be the circumcircle of triangle $D E F$. Let Q be the point of intersection of the lines $B E$ and $C F$. Let H, J, K and M be the second points of intersection of ω with the lines $C E, C F, B E$ and $B F$, respectively. Circles $H Q J$ and $K Q M$ intersect at the two points Q and T.

Prove that T lies on line $A D$.
2. Alison can perform the following operations on any finite simple ${ }^{1}$ graph G :
(a) If i is a vertex with odd degree in G, she can remove i and all edges involving i.
(b) For each vertex $i \in G$, she creates a new vertex i^{\prime}. Then she adds an edge between each pair i and i^{\prime}. She also adds an edge between i^{\prime} and j^{\prime} iff there is an edge in G between i and j. No further edges are added or removed.

Prove that, for any initial such graph, Alison may apply some sequence of these operations to generate a graph containing no edges.
3. Fix an integer $k \geq 2$. Two players, called Ana and Banana, play the following game of numbers: Initially, some integer $n \geq k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number m just written on the blackboard and replaces it by some number m^{\prime} with $k \leq m^{\prime}<m$ that is coprime to m. The first player who cannot move anymore loses.

An integer $n \geq k$ is called good if Banana has a winning strategy when the initial number is n, and bad otherwise.

Consider two integers $n, n^{\prime} \geq k$ with the property that each prime number $p \leq k$ divides n if and only if it divides n^{\prime}. Prove that either both n and n^{\prime} are good or both are bad.

[^0]
[^0]: ${ }^{1}$ Finite means a finite number of vertices. Simple means no loops (edges from i to i), and no multiple edges (two or more edges i to j).

