2009 United Kingdom \& Australia Pre-IMO Camp
 Trinity College, Cambridge

2nd Test

Thursday 9 July

The Ashes

- Each question is worth 7 points.
- Time allowed is $4 \frac{1}{2}$ hours.
- No books, notes or calculators permitted.

1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily positive) satisfying the equations

$$
a^{n}+p b=b^{n}+p c=c^{n}+p a,
$$

then $a=b=c$.
2. Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$.
Show that the quadrilateral $A B C D$ is cyclic.
3. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$ be a $(k+\ell)$-element set of real numbers contained in the interval $[0,1] ; k$ and ℓ are positive integers. A k-element subset $A \subset S$ is called nice if

$$
\left|\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{\ell} \sum_{x_{j} \in S \backslash A} x_{j}\right| \leq \frac{k+\ell}{2 k \ell} .
$$

Prove that the number of nice subsets is at least

$$
\frac{2}{k+\ell}\binom{k+\ell}{k}
$$

