AUSTRALIAN MATHEMATICAL OLYMPIAD COMMITTEE

2008 IMO Team Training

Exam T15

- Each question is worth 7 points.
- Time allowed is $4 \frac{1}{2}$ hours.
- No books, notes or calculators permitted.
- Any questions must be submitted in writing within the first half hour of the exam.

1. Let $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$ be positive real numbers. Prove that

$$
\frac{1}{x_{1}}+\frac{x_{1}}{x_{2}}+\frac{x_{1} x_{2}}{x_{2}}+\frac{x_{1} x_{2} x_{3}}{x_{4}}+\cdots+\frac{x_{1} x_{2} \ldots x_{n}}{x_{n+1}} \geq 4\left(1-x_{1} x_{2} \ldots x_{n+1}\right) .
$$

2. Let X be a set of 10,000 integers, none of them being divisible by 47 .

Prove that there exists a 2007 -element subset Y of X such that $a-b+c-d+e$ is not divisible by 47 for any $a, b, c, d, e \in Y$.
3. Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incentre. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F.
Prove that points E, I and F are collinear.

